Abstract

This paper has established a viscoelasticplastic constitutive model for A7N01T6 alloy welding, which is temperature and deformation history dependent. The model uses elasticmixed hardening plastic and creep equation to describe the strain hardening at low temperatures and strain softening at high temperatures, respectively. Then it is applied for finite element numerical simulation of the welding process. By comparison with the conventional temperature dependent elasticperfectly plastic model, the overall longitudinal residual compressive plastic strain and the maximum deformation of welding sheet are larger. This is because that the plastic strain is mostly produced in high temperature range. Strain softening has great influence on the evolution of plastic strain. The compressive plastic strain during heating is larger than the tensile plastic strain during cooling. Strain hardening effect on welding residual strain and stress is almost negligible. Using the established constitutive model, welding residual stress and strain are in good agreement with the theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.