Abstract
When stressed during normal use, synthetic barriers such as gloves and condoms can develop tears that are undetectable by the user. It is of considerable public-health importance to estimate the quantity of virus transmitted through the tear, in the event of viral contamination of the fluid medium. A mathematical model that accounts for virus adsorption to the barrier material was used to compute the quantity of virus transmitted through defects of various geometries. Slits were modeled as cylinders of elliptic cross section, and upper and lower bounds for the transmission rate of HIV and Hepatitis B virus (HBV) were calculated for barrier-use scenarios such as coitus and gripping of surgical instruments. For a 1-microm high slit, HIV transmission was found to be negligible for all likely use scenarios. HIV transmission became potentially significant for a 5-microm slit. Due to its high titer, HBV transmitted at potentially important levels even through the 1-microm slit. The dependence of the transmission rate upon pore aspect ratio was determined and found to be very strong for high-adsorption situations and near-circular pores. Numerical predictions of virus transport through a laser-drilled hole in a condom matched experimental measurements well, even when the tapered nature of the geometry is ignored.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.