Abstract

Fagonia indica from Zygophyllaceae family is a medicinal specie with significant antidiabetic potential. The present study aimed to investigate the in vitro antidiabetic activity of Fagonia indica crude extract followed by an in silico screening of its phytoconstituents. For this purpose, crude extract of Fagonia indica was prepared and divided in three different parts, i.e., n-hexane, ethyl acetate, and methanolic fraction. Based on in vitro outcomes, the phytochemical substances of Fagonia indica were virtually screened through a literature survey and a screening library of compounds (1-13) was prepared. The clinical potential of these novel drug candidates was assessed by applying an ADME screening profile. Findings of SwissADME indicators (Absorption, Distribution, Metabolism, and Excretion) for the compounds (1-13) presented relatively optimal physicochemical characteristics, drug-likeness, and medicinal chemistry. The antidiabetic action of these leading drug candidates was optimized through molecular docking analysis against 3 different human pancreatic α-amylase macromolecular targets with (PDB ID 1B2Y), (PDB ID 3BAJ), and (PDB ID: 3OLI) by applying Virtual Docker (Molegro MVD). Metformin was taken as a reference standard for the sake of comparison. In vitro antidiabetic evaluation gave good results with promising α-amylase inhibitory action in the form of IC50 values, as for n-hexane extract = 206.3µM, ethyl acetate = 41.64µM, and methanolic extract = 9.61µM. According to in silico outcomes, all 13 phytoconstituents possess the best binding affinity with successful MolDock scores ranging from - 97.2003 to - 65.6877kcal/mol and show a great number of binding interactions than native drug metformin. Therefore, the current work concluded that the diabetic inhibition prospective of extract and the compounds of Fagonia indica may contribute to being investigated as a new class of antidiabetic drug or drug-like candidate for further studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.