Abstract

Virtual constraints are relations imposed in a control system that become invariant via feedback instead of real physical constraints acting on the system. Nonholonomic systems are mechanical systems with non-integrable constraints on the velocities. In this work, we introduce the notion of virtual nonholonomic constraints in a geometric framework. More precisely, it is a controlled invariant distribution associated with an affine connection mechanical control system. We show the existence and uniqueness of a control law defining a virtual nonholonomic constraint and we characterize the trajectories of the closed-loop system as solutions of a mechanical system associated with an induced constrained connection. Moreover, we characterize the dynamics for nonholonomic systems in terms of virtual nonholonomic constraints, i.e., we characterize when can we obtain nonholonomic dynamics from virtual nonholonomic constraints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.