Abstract

Systems on chip (SOC) contain multiple concurrent applications with different time criticality (firm, soft, non real-time). As a result, they are often developed by different teams or companies, with different models of computation (MOC) such as dataflow, Kahn process networks (KPN), or time-triggered (TT). SOC functionality and (real-time) performance is verified after all applications have been integrated. In this paper we propose the CompSOC platform and design flows that offers a virtual execution platform per application, to allow independent design, verification, and execution . We introduce the composability and predictability concepts, why they help, and how they are implemented in the different resources of the CompSOC architecture. We define a design flow that allows real-time cyclo-static dataflow (CSDF) applications to be automatically mapped, verified, and executed. Mapping and analysis of KPN and TT applications is not automated but they do run composably in their allocated virtual platforms. Although most of the techniques used here have been published in isolation, this paper is the first comprehensive overview of the CompSOC approach. Moreover, three new case studies illustrate all claimed benefits: 1) An example firm-real-time CSDF H.263 decoder is automatically mapped and verified. 2) Applications with different models of computation (CSDF and TT) run composably. 3) Adaptive soft-real-time applications execute composably and can hence be verified independently by simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.