Abstract

We study 1-loop MHV amplitudes in N=4 super Yang-Mills theory and in N=8 supergravity. For Yang-Mills we find that the simple form for the full amplitude presented by Del Duca, Dixon and Maltoni naturally leads to one that has physical residues on all compact contours. After expanding the simple form in terms of standard scalar integrals, we introduce redundancies under certain symmetry considerations to impose the color-kinematics duality of Bern, Carrasco and Johansson (BCJ). For five particles we directly find the results of Carrasco and Johansson as well as a new compact form for the supergravity amplitude. For six particles we find that all kinematic dual Jacobi identities are encapsulated in a single functional equation relating the expansion coefficients. By the BCJ double-copy construction we obtain a formula for the corresponding N=8 supergravity amplitude. Quite surprisingly, all physical information becomes independent of the expansion coefficients modulo the functional equation. In other words, there is no need to solve the functional equation at all. This is quite welcome as the functional equation we find, using our restricted set of redundancies, actually has no solutions. For this reason we call these results virtual color-kinematics duality. We end with speculations about the meaning of an interesting global vs. local feature of the functional equation and the situation at higher points.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.