Abstract
Viral protein R (Vpr) of HIV-1 plays an important role in viral replication in macrophages. Various lines of evidence suggest that expression of Vpr in macrophages causes immunopathogenesis; however, the underlying mechanism is not yet fully understood. In this study, it was shown that recombinant Vpr (rVpr) induces retrotransposition of long interspersed element-1 in RAW264.7, a macrophage-like cell line, and activates reverse transcriptase-dependent immunotoxic cascades including production of IFN-β and phosphorylation of signal transducer and activator of transcription 1 (STAT1). Knockout experiments based on the CRISPR/Cas9 nickase system further demonstrated that cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) and stimulator of interferon gene (STING) are responsible for IFN-β production and STAT1 phosphorylation, respectively. Moreover, rVpr was found to increase production of glutaminase C, a regulator of glutamate synthesis, which is also dependent on the cGAS-STING pathway. Taken together with reports that glutaminase C is involved in the pathogenesis of HIV-associated neurocognitive disorder (HAND) and that Vpr is detectable in the cerebrospinal fluid of HIV-1-positive patients, a possible role of Vpr-induced L1-RTP and immunotoxic cascades in the development of HAND is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.