Abstract
The development of magnetically active adsorbents for effective iodine removal would be highly desirable to address environmental pollution and remediation. Herein, we demonstrated the synthesis of Vio@SiO2@Fe3O4 as an adsorbent via surface functionalisation of electron-deficient bipyridium (viologen) units on the surface of magnetically active silica-coated magnetite (Fe3O4) core. This adsorbent was characterised thoroughly using various analytical techniques, such as field emission scanning electron microscopy (FESEM), thermal gravimetric analysis, Fourier transform infrared spectroscopy (FTIR), field emission transmission electron microscopy (FETEM), Brunauer-Emmett-Teller (BET) analysis and X-ray photon analysis (XPS). The removal of triiodide from the aqueous solution was monitored via the batch method. It revealed that the complete removal was achieved upon stirring for 70 min. The thermally stable and crystalline Vio@SiO2@Fe3O4 displayed efficient removal capacity even in the presence of other competing ions and at different pHs. The adsorption kinetics data were analysed following the pseudo-first-order and pseudo-second-order models. Further, the isotherm experiment showed that the maximum uptake capacity of iodine is 1.38 g/g. It can be regenerated and reused over multiple cycles to capture iodine. Further, Vio@SiO2@Fe3O4 displayed a good removal capacity toward toxic polyaromatic, Benzanthracene (BzA) pollutant with an uptake capacity of 2445 μg/g. This effective removal of toxic pollutants iodine/benzanthracene was attributed to the strong non-covalent electrostatic and π-π interaction with electron-deficient bipyridium units.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.