Abstract

A series of carbazole-based dyes functionalized with different auxochromes via vinyl linker have been synthesized and characterized. A progressive shift in the absorption maximum is observed as the conjugation and electron-donating nature of chromophore increases. Dyes containing electron-releasing terminal groups such as triphenylamine and carbazole exhibited positive emission solvatochromism attributable to an induced intramolecular charge transfer from triphenylamine/carbazole donor to cyano acceptor. The superior electroluminescence performance of disubstituted dyes demonstrates the role of an additional cyanocarbazole in achieving balanced charge transport compared to monosubstituted analogues. In addition, the electroluminescence performance of the dyes exhibited trends attributable to the electron richness of the linker/terminal chromophore. Thus, the carbazole-based derivatives displayed better electroluminescence efficiency than the analogous fluorene derivatives. Similarly, 2,7-substituted carbazole derivative exhibited better performance than the 3,6-substituted carbazole derivative. A doped electroluminescent device containing 3 wt % tricarbazole derivative showed blue emission with a high external quantum efficiency of 5.3% at a practical brightness of 1000 cd/m2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.