Abstract

In this paper, we propose derivative-oriented parametric sensitivity indices to investigate the influence of parameter uncertainty on a previously proposed failure probability-based importance measure in the presence of multidimensional dependencies. Herein, the vine copula function, a powerful mathematical tool for modeling variable dependencies, is utilized to establish the joint probability density function (PDF) for multidimensional dependencies. Based on the properties of the copula function, the developed parametric sensitivity indices are decomposed into independent and dependent parts. Using these parts, different types of contributions to the failure probability are identified. By computing the kernel function for each marginal PDF and the copula kernel function for each pair-copula PDF involved in the vine factorization, a general numerical algorithm is developed for estimating separated parametric sensitivity indices. Finally, the feasibility of the proposed indices and numerical solutions is verified through a numerical example and by solving two engineering problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.