Abstract

We propose a unified approach for video summarization based on the analysis of video structures and video highlights. Two major components in our approach are scene modeling and highlight detection. Scene modeling is achieved by normalized cut algorithm and temporal graph analysis, while highlight detection is accomplished by motion attention modeling. In our proposed approach, a video is represented as a complete undirected graph and the normalized cut algorithm is carried out to globally and optimally partition the graph into video clusters. The resulting clusters form a directed temporal graph and a shortest path algorithm is proposed to efficiently detect video scenes. The attention values are then computed and attached to the scenes, clusters, shots, and subshots in a temporal graph. As a result, the temporal graph can inherently describe the evolution and perceptual importance of a video. In our application, video summaries that emphasize both content balance and perceptual quality can be generated directly from a temporal graph that embeds both the structure and attention information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.