Abstract

Semi-supervised video object segmentation (VOS) is to predict the segment of a target object in a video when a ground truth segmentation mask for the target is given in the first frame. Recently, space-time memory networks (STM) have received significant attention as a promising approach for semi-supervised VOS. However, an important point has been overlooked in applying STM to VOS: The solution (=STM) is non-local, but the problem (=VOS) is predominantly local. To solve this mismatch between STM and VOS, we propose new VOS networks called kernelized memory network (KMN) and KMN with multiple kernels (KMN M). Our networks conduct not only Query-to-Memory matching but also Memory-to-Query matching. In Memory-to-Query matching, a kernel is employed to reduce the degree of non-localness of the STM. In addition, we present a Hide-and-Seek strategy in pre-training to handle occlusions effectively. The proposed networks surpass the state-of-the-art results on standard benchmarks by a significant margin (+4% in JM on DAVIS 2017 test-dev set). The runtimes of our proposed KMN and KMN M on DAVIS 2016 validation set are 0.12 and 0.13 seconds per frame, respectively, and the two networks have similar computation times to STM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.