Abstract

Nuclear dynamics in the first six vibronically coupled electronic states of pentafluorobenzene radical cation is studied with the aid of the standard vibronic coupling theory and quantum dynamical methods. A model 6 × 6 vibronic Hamiltonian is constructed in a diabatic electronic basis using symmetry selection rules and a Taylor expansion of the elements of the electronic Hamiltonian in terms of the normal coordinate of vibrational modes. Extensive ab initio quantum chemistry calculations are carried out for the adiabatic electronic energies to establish the diabatic potential energy surfaces and their coupling surfaces. Both time-independent and time-dependent quantum mechanical methods are employed to perform nuclear dynamics calculations. The vibronic spectrum of the electronic states is calculated, assigned, and compared with the available experimental results. Internal conversion dynamics of electronic states is examined to assess the impact of various couplings on the nuclear dynamics. The impact of increasing fluorination of the parent benzene radical cation on its radiative emission is examined and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.