Abstract

Recent findings have revealed that not only neurons but also astrocytes, a special type of glial cells, are major players of neuronal information processing. It is now widely accepted that they contribute to the regulation of their microenvironment by cross-talking with neurons via gliotransmitters. In this context, we here study the phenomenon of vibrational resonance in neurons by considering their interaction with astrocytes. Our analysis of a neuron-astrocyte pair reveals that intracellular dynamics of astrocytes can induce a double vibrational resonance effect in the weak signal detection performance of a neuron, exhibiting two distinct wells centred at different high-frequency driving amplitudes. We also identify the underlying mechanism of this behaviour, showing that the interaction of widely separated time scales of neurons, astrocytes and driving signals is the key factor for the emergence and control of double vibrational resonance. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 2)'.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.