Abstract

Abstract This paper proposes a dedicated approach and its experimental validation when dealing with structures (including stochastic parameters, such as interface parameters) in medium-frequency vibrations. The first ingredient is the use of a dedicated approach – the Variational Theory of Complex Rays (VTCR) – to solve the medium-frequency problem. The VTCR, which uses two-scale shape functions verifying the dynamic equation and the constitutive relation, can be viewed as a means of expressing the power balance at the different interfaces between substructures. The second ingredient is the use of the Polynomial Chaos Expansion (PCE) to calculate the random response. Since the only uncertain parameters are those which appear in the interface equations (which, in this application, are the complex connection stiffness parameters), this approach leads to very low computation costs. This method is validated on a new kind of touch screen. The simulated mobilities are compared with experimental ones obtained with a laser vibrometer and a good agreement is founded on a large medium-frequency bandwidth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.