Abstract

In the modern technological advancements, Unmanned Aerial Vehicles (UAVs) have emerged across diverse applications. As UAVs evolve, fault diagnosis witnessed great advancements, with signal processing methodologies taking center stage. This paper presents an assessment of vibration-based signal processing techniques, focusing on Kalman filtering (KF) and Discrete Wavelet Transform (DWT) multiresolution analysis. Experimental evaluation of healthy and faulty states in a quadcopter, using an accelerometer, are presented. The determination of the 1024 Hz sampling frequency is facilitated through finite element analysis of 20 mode shapes. KF exhibits commendable performance, successfully segregating faulty and healthy peaks within an acceptable range. While the six-level multi-decomposition unveils good explanations for fluctuations eluding KF. Ultimately, both KF and DWT showcase high-performance capabilities in fault diagnosis. However, DWT shows superior assessment precision, uncovering intricate details and facilitating a holistic understanding of fault-related characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.