Abstract

Ring puckering in 3,3-dimethyl oxetane has been investigated using microwave spectroscopy. Microwave spectra of the ground state, the first six ring-puckering excited states, and nine excited states of the methyl groups' deformation vibrations have been observed. The μ a electric dipole moment component has been determined as 2.03(3) D from Stark-effect measurements. The vibrational dependence of the rotational constants is consistent with the ring-puckering potential function derived by Duckett et al. ( J. Mol. Spectrosc. 69, 159–165 (1978)). Coriolis coupling interactions have been observed and are satisfactorily accounted for with a quartic centrifugal distortion Hamiltonian. The vibrational dependence of the centrifugal distortion constants has been analyzed using the theory developed by Creswell and Mills. In order to reproduce the experimental value of the vibration-rotation interaction parameter, δμ ab δQ , a dynamical model allowing the rocking of the CH 3CCH 3 group should be used. The equilibrium ring puckering angle calculated with this model and the ring-puckering potential function is 17.5°.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.