Abstract

This paper examines the vibration response of the steel-concrete composite Ultra Shallow Floor Beam (USFB®) flooring system which incorporates asymmetric steel perforated beams to accommodate the concrete floor slab within the depth of the flanges while allowing reinforcement and/or service ducts to pass through the web openings. This is a lightweight flooring system that can accommodate long spans, thus becoming susceptible to floor vibrations due to external resonant dynamic loads. To investigate the influence of slab thickness and boundary conditions on the natural frequencies of the USFB flooring system, parametric studies are conducted using a finite element model and five floor spans. The model was first validated against an experimental test conducted by the authors. Emphasis is placed on the fundamental frequency to predict the possibility of resonance of this complex flooring system with typical human-induced dynamic loads in building structures. To further facilitate the practical numerical modelling and vibration analysis of buildings with USFB floors in standard commercial structural software, an analytical method of deriving equivalent isotropic plate properties is developed and its accuracy is numerically verified vis-à-vis with detailed ABAQUS models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.