Abstract

The dynamic model and control strategy of a rotating cantilever beam are investigated in the paper. The magnetostrictive layer is applied as the actuator and the nonlinear constitutive relation is analyzed. The kinetic energy and potential energy of the beam are obtained. The Hamilton method and Galerkin approach are adopted to obtain and disperse the dynamic equations, respectively. The negative feedback control methodology is used in the control system, which is performed by the solenoid coils. Numerical results show that the magnetostrictive control method is effective and plays the role of damping in the dynamic equations. The nonlinear constrictive characteristics of the magnetostrictive material can affect the control results deeply and should be paid enough attention. The magnetostrictive control performances are influenced by many parameters such as the bias magnetic field, control gain and pre-stress etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.