Abstract

A method to predict the dynamic behaviour of anisotropic truncated conical shells conveying fluid is presented in this paper. It is a combination of finite element method and classical shell theory. The displacement functions are derived from exact solutions of Sanders’ shell equilibrium equations of conical shells. The velocity potential, Bernoulli’s equation and impermeability condition have been applied to the shell–fluid interface to obtain an explicit expression for fluid pressure which yields three forces (inertial, centrifugal, Coriolis) of the moving fluid. To the best of the authors’ knowledge, this paper reports the first comparison made between two works which deal with conical shells subjected to internal flowing fluid effects. The results obtained by this method for conical shells with various boundary condition and geometries, in vacuum, fully-filled and when subjected to flowing fluid were compared with those of other experimental and numerical investigations and good agreement was obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.