Abstract

This article presents the Ritz method for the vibration analysis of sandwich plates having an orthotropic core and laminated facings. The planform of the plate may take on any arbitrary shape. On the basis of the Mindlin plate theory and the Ritz method, the governing eigenvalue equation for determining the natural frequencies was derived. The Ritz method was automated and made computationally effective for general-shaped plates with any boundary conditions by (1) adopting the product of polynomial functions and boundary equations that were raised to appropriate powers and (2) applying Green's theorem to transform the integration over the general-shaped domain into a closed line integration. The Ritz formulation and software were verified by the close agreement with vibration frequencies obtained by previous researchers for a wide range of subset plate problems involving isotropic, laminated, and sandwich plates of various shapes. Moreover, sample natural frequencies of sandwich plates with laminated facings are presented for some quadrilateral plate shapes. These frequencies should be useful as reference results to researchers who are developing new methods or software for vibration analysis of sandwich plates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.