Abstract

Fatigue tests of cruciform welded joints made of Q355B steel at very-high-cycle fatigue (VHCF) regimes were carried out on as-welded specimens using high-frequency mechanical impact (HFMI) treatment in dry air and water-spray environments, respectively. The influence of the environment on fatigue life was more obvious in the VHCF regime. It was found that S-N curves became flat over the range of 106–108 cycles for as-welded specimens, while a continuously decreasing S-N curve existed for HFMI-treated specimens. Fatigue cracks initiated from the weld toe of the as-welded specimens in dry air and water-spray environments. Due to residual stress, the crack initiation site transition of HFMI-treated specimens from the weld toe to the weld root and base metal was observed at lower stress levels. Moreover, hydrogen-assisted quasi-cleavage and intergranular fracture were captured using a scanning electron microscope and a hydrogen permeation test.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.