Abstract

The active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), N-methyl-4-phenylpyridinium (MPP(+)), selectively destroys the dopaminergic neurons and induces the symptoms of Parkinson's disease. Inhibition of mitochondrial complex I and/or the perturbation of dopamine metabolism through cellular and granular accumulation have been proposed as some of the major causes of neurotoxicity. In the present study we have synthesized and characterized a number of MPTP and MPP(+) derivatives that are suitable for the comparative neurotoxicity and complex I inhibition versus dopamine metabolism perturbation studies. Structure-activity studies with bovine chromaffin granule ghosts show that 3'-hydroxy-MPP(+) is one of the best known substrates for the vesicular monoamine transporter (VMAT). A series of compounds that combine the structural features of MPP(+) and a previously characterized VMAT inhibitor, 3-amino-2-phenyl-propene, have been identified as the most effective VMAT inhibitors. These derivatives have been used to define the structural requirements of the VMAT substrate and inhibitor activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.