Abstract

A digital-based, process-supply-and-temperature independent voltage reference suitable to nanoscale CMOS technologies, which exploits the recently proposed ‘virtual reference’ concept to achieve a very low thermal drift, is presented. Its performance is assessed on the basis of simulations and experiments carried out on a microcontroller-based, proof-of-concept prototype and is compared with state-of-the-art integrated analogue and digital voltage references. A simulated (measured) thermal drift as low as 1 ppm/°C (5 ppm/°C) in the temperature range −40/+140°C (−10/+100°C) is reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.