Abstract
Very long period seismic signals, whose waveform consists of an initial impulsive signal and a later oscillatory wave with 0.2 or 0.4 Hz in dominant frequency, were observed before the caldera formation in the 2000 activity of Miyake‐jima volcano, Japan. The results of waveform inversion show that the initial and later parts can be explained by a northward single force of 1.5 × 108 N working at a depth of 2 km beneath the summit and a moment tensor solution at a depth of 5 km below and 2 km southwest of the summit with ∼1012 Nm, respectively. A clear positive correlation of the amplitudes between the two sources strongly suggests that the shallow single force triggers the deeper moment source in spite of the several km distance between the two sources. To analyze the source time functions of the moment tensor that do not always oscillate in phase, we introduce a new method of moment tensor diagonalization which is performed in the frequency domain. According to the analysis, the two principal components have similar amplitudes and are greater than the third principal component, suggesting an axially symmetric oscillation. One of the possible systems is a combination of two cracks intersecting perpendicularly. Our interpretation is that the single force was generated when magma containing rock blocks suddenly began to move in a choked subsurface magma path, and the resultant pressure waves propagated and excited a resonance oscillation of the two cracks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.