Abstract

We present the results of high-resolution VLBI (very long baseline interferometry) observations at 1.6 and 4.9 GHz of the radio-loud Seyfert galaxy, Mrk 6. These observations are able to detect a compact radio core in this galaxy for the first time. The core has an inverted spectral index (|$\alpha ^{1.6}_{4.9}$| = +1.0 ± 0.2) and a brightness temperature of 1 × 108 K. Three distinct radio components, which resemble jet elements and/or hotspots, are also detected. The position angles of these elongated jet elements point not only to a curved jet in Mrk 6, but also towards a connection between the AGN and the kpc-scale radio lobes/bubbles in this galaxy. Firmer constraints on the star formation rate provided by new Herschel observations (SFR < 0.8 M⊙ yr−1) make the starburst-wind-powered bubble scenario implausible. From plasma speeds, obtained via prior Chandra X-ray observations, and ram pressure balance arguments for the interstellar medium and radio bubbles, the north–south bubbles are expected to take 7.5 × 106 yr to form, and the east–west bubbles 1.4 × 106 yr. We suggest that the jet axis has changed at least once in Mrk 6 within the last ≈107 yr. A comparison of the nuclear radio-loudness of Mrk 6 and a small sample of Seyfert galaxies with a subset of low-luminosity FR I radio galaxies reveals a continuum in radio properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.