Abstract

Nowadays, solid-state inorganic-organic hybrid solar cells based on one-dimensional (1D) inorganic semiconducting nanostructures and organic polymers are believed to offer convincing solutions for the realm of next generation solar cells. In this regard, 1D ZnCdS nanowire (NW) arrays were fabricated on transparent conducting substrates through a catalyst free co-evaporation method and their wurtzite structural characteristics, 1D morphological layout and valence state/composition were studied in detail using X-ray diffraction, high-resolution electron microscopy and X-ray photoelectron spectroscopy, respectively. The existence of deep level traps and optical band gap of ZnCdS NWs were additionally studied using room-temperature cathodoluminescence and UV–vis absorbance measurements. The inorganic-organic hybrid cells were then fabricated using these NWs via spin coating poly(3,4-ethylenedioxythiophene) and poly(styrene sulfonate) based polymers. The morphological dissemination of the polymer deposits on NWs were also studied individually by electron microscopy. The solar cell (J-V) characteristics of the fabricated architectures were investigated at room-temperature and as a function of temperature and different intensities of incident light irradiation. The trap energy of the devices was noted to decrease from 68.1 to 40.7eV, suggesting the active role of trap sites that could have originated from the surface defects and other structural disorders across the hybrid heterostructures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.