Abstract

Employing a low-cost and highly efficient electrocatalyst to replace Ir-based catalysts for oxygen evolution reaction (OER) has drawn increasing interest in renewable energy storage. In this work, a vertically aligned FeOOH/NiFe layered double hydroxides (LDHs) nanosheets supported on Ni foam (VA FeOOH/NiFe LDHs-NF) is prepared as a highly effective OER electrode in alkaline electrolyte. The VA FeOOH/NiFe LDHs-NF represents nanosheet arrays on nickel foam with some interspace among them. The vertically aligned and interlayer-structured architecture is binder-free and contributes to facile strain relaxation, relieving the exfoliation of the catalysts layer caused by the oxygen evolution process. The as-prepared electrode shows current densities of 10 and 500 mA cm-2 at overpotentials of 208 and 288 mV, and good stability in a half-cell electrolyzer. Besides, the alkaline polymer electrolyte water electrolyzer (APEWE) with this electrode showed 1.71 V at 200 mA cm-2, and 2.041 V at 500 mA cm-2, exhibiting the corresponding energy efficiency of 86.0% and 72.0% (based on the lower heating value of hydrogen), which is better than the typical commercial alkaline water electrolyzer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.