Abstract
The transient dynamic response of single piles in a layered half-space under a time-dependent vertical force is analyzed by an FEM-BEM coupling approach. The pile is modeled by FEM and the layered half-space is modeled by a general cylindrical coordinates time-domain BEM. Only one-dimensional discretization is necessary on the boundaries of the three-dimensional layered half-space by virtue of the Fourier theory, while the pile shaft can be discretized as a one-dimensional elastic beam. The compatibility and equilibrium conditions between pile shaft and soil layers are employed to assemble respective equations into one. Fairly good agreement between two unknown solutions and the current approach is found. Parametric studies reveal the influences of several dimensionless factors, such as E p/ E s, l/ r 0, ϱ p/ ϱ s and ν s. The effect of soil layering and the support condition of the pile tip is also reported by numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.