Abstract

The quantum electrical and thermal transport properties of band-to-band tunneling are studied in the van der Waals (vdW) vertical MoS2/WTe2 nanoribbon heterojunction as well as the lateral MoS2/WTe2 heterojunction. The computational method is based on the Green's function method within the tight-binding approach in the coherent regime. The numerical results show distinct properties, such as a noticeable rectification ratio (RR) and a negative differential resistance (NDR). This device can act as a vertical tunneling transistor structure. Besides, the MoS2/WTe2 nanoribbon devices with the armchair termination exhibit the highest value of the ZTe at μ=±0.72 eV leading to their improved thermoelectric properties. Our findings about the hybrid heterostructures thus shed a new light toward extend the applications of 2D monolayer transition metal dichalcogenides (TDMs) materials in electronic and optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.