Abstract

AbstractThe ice shelf water (ISW) plume is a prevalent phenomenon at the base of an ice shelf or sea ice adjacent to the ice shelf front. Such plumes may become supercooled and deposit marine ice when they rise. In the existing frazil ice–laden ISW plume models, it is generally assumed that supercooling and frazil ice growth can be adequately treated by using depth-averaged freezing temperature and vertically uniform frazil ice concentration within a plume. In reality, however, the temperature deficit and frazil ice concentration both increase toward the top of the plume. Hence, frazil crystals typically experience a greater deficit than that suggested by the plume’s temperature subtracted from its depth-averaged freezing point. In this study, the authors considered the combined nonlinear effects of vertical structures of frazil ice concentration and thermal forcing within an ISW plume by introducing equilibrium vertical profiles of frazil ice concentration into a horizontal two-dimensional depth-integrated ISW plume model. A series of idealized numerical experiments and an observation-based simulation beneath the western side of Ronne Ice Shelf have been conducted by using the vertically modified and original depth-integrated ISW plume models. It was found that the supercooled area, supercooling level, and suspended frazil ice and marine ice productivities are all substantially underestimated by the original models. Moreover, the differences are sensitive to the selected frazil ice size configuration. These results suggest that the vertical modification introduced in this study can significantly improve simulated marine ice distribution and its corresponding production, in comparison with those estimated by previous depth-integrated models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.