Abstract
Vertical n-channel tunnel field-effect transistors (FETs) based on compound semiconductors, in a new geometry with tunneling normal to the gate, are demonstrated for the first time using an n+ In0.53Ga0.47As/n+ /n+,=0.53- >;1 GaAs/p+ InP heterojunction. At 300 K, the TFETs show an on-current of ~20 μA/μm and a minimum subthreshold swing (SS) of 130 mV/dec using an Al2O3 gate dielectric (EOT ~3.4 nm). Postdeposition annealing of the gate dielectric improves SS, and device passivation using atomic layer deposition can effectively prevent degradation of drain current over time. The clear negative differential resistance (NDR) observed in the tunnel junction and the trend toward NDR in the TFETs confirm that the transport mechanism in these FETs is interband tunneling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.