Abstract

Under the background of the Coronavirus Disease 2019 (COVID-19) pandemic, research on pathogens deserves greater attention in the natural environment, especially in the widely distributed contaminated sites with complicated and severe organic pollution. In this study, the community composition and assembly of soil pathogens identified by the newly-developed 16S-based pipeline of multiple bacterial pathogen detection (MBPD) have been investigated on spatiotemporal scales in the selected organic polluted site. We demonstrated that the richness and diversity of the pathogenic communities were primarily controlled by soil depth, while the structure and composition of pathogenic communities varied pronouncedly with seasonal changes, which were driven by the alterations in both physiochemical parameters and organic contaminants over time. Network analysis revealed that the overwhelmingly positive interactions, identified multiple keystone species, and a well-organized modular structure maintained the stability and functionality of the pathogenic communities under environmental pressures. Additionally, the null-model analysis showed that deterministic processes dominated the pathogenic community assembly across soil profiles. In three seasons, stochasticity-dominated processes in spring and summer changed into determinism-dominated processes in winter. These findings extend our knowledge of the response of the bacterial pathogenic community to environmental disruptions brought on by organic contaminated sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.