Microporous and Mesoporous Materials | VOL. 294
Read
Versatile surface modification of aerogels by click chemistry as an approach to generate model systems for CO2 adsorption features in amine-containing organosilica

Abstract

Abstract The conversion of waste into valuable products is most appealing in the case of CO2, a molecule which is produced in mass by our society and industries. Because its atmospheric concentration correlates to climate change and the green-house effect, major efforts are on the way to reduce the emission of CO2. One promising strategy is the separation of CO2 from the gas-phase (e.g. flue gases) by solid-adsorbents containing amine moieties. The synthesis of tailor-made adsorbents with changing surface properties remains a challenge. This work presents a click chemistry approach that enables the easy modification of organosilica materials with functional groups that can be used as model systems to study the influence of surface chemistry on CO2 adsorption. As an example, the modification of the materials with primary amines is discussed in detail but furthermore the approach offers the possibility to tailor the surface properties using any desired functional group. The increased affinity of the used copper catalyst introduced some difficulties but we were able to remove all remains of copper. With this approach, we were able to synthesize materials with different degrees of functionalization up to 80 %. This approach for the development of new carbon capture model systems offers high functionalization combined with the flexibility of a post-functionalization approach. Thus, surface chemistry can be tailored to study the influence of surface chemistry on CO2 adsorption. As an example for the model character of our material...

Concepts Powered ByUnsilo

Adsorption Search on this concept
Chemistry Search on this concept
Surface Chemistry Search on this concept
Amine Search on this concept
CO2 Adsorption Search on this concept
Click Chemistry Search on this concept
Copper Search on this concept
Green-house Effect Search on this concept
Click Chemistry Approach Search on this concept
Climate Change Search on this concept

Similar Papers

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19

ONE PROBLEM . ONE PURPOSE . ONE PLACE

Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard