Abstract

Many studies have performed dosimetric studies using various metal implants however these are difficult to translate to other implants of a different geometry or material (Rijken and Colyer, J Appl Clin Med Phys 18:5:301-306, 2017; Ade and du Plessis, J Appl Clin Med Phys 18:5:162-173, 2017; Prabhakar et al. Rep Pract Oncol Radiother 18:209-213, 2013; Ng et al. Rep Pract Oncol Radiother 20:273-277, 2015; Reft et al. Med Phys 30:1162-1182, 2003; Sasaki et al., Nihon Hoshasen Gijutsu Gakkai Zasshi 72(9):735-745, 2016). In this study, the ability of the Monaco Monte Carlo algorithm (Elekta AB, Stockholm, Sweden) to model radiation transport through different types of metals was evaluated. Investigation of the capabilities and limitations of the algorithm is required for the potential use of Monaco for planning radiotherapy treatments when avoidance of metal implants is clinically undesirable. A MapCHECK 2 diode array (Sun Nuclear Corp, Melbourne, USA) and a PTW 30013 Farmer chamber was used to measure the dose at depth, downstream of 1cm × 5cm × 5cm metal blocks of three known compositions; stainless steel, aluminium and MCP96. The setup was imaged using a CT scanner and imported into the Monaco TPS where the beam arrangement was replicated. The density of the metals was overridden using the known electron density of each (IMPAC Medical Systems Inc, Monaco dose calculation technical reference. IMPAC Medical Systems, Sunnydale, CA, 2013). The differences between the dose measured using the ion chamber and calculated using Monaco downstream of the 1cm metal blocks were respectively: - 1.2%, - 2.2% and 9.5% when irradiated using a 6 MV beam, and - 0.9%, - 1.3% and 14%, when irradiated using a 15 MV beam. This was then repeated using 2cm and 3cm of each metal type giving similar results for aluminium and stainless steel and increased discrepancy for MCP96. Discrepancies between treatment planning software and measurements at depth have been shown to give uncertainties between 5 and 23% in previous studies (Rijken and Colyer, J Appl Clin Med Phys 18:5:301-306, 2017; Ade and du Plessis, J Appl Clin Med Phys 18:5:162-173, 2017; Prabhakar et al. Rep Pract Oncol Radiother 18:209-213, 2013; Ng et al. Rep Pract Oncol Radiother 20:273-277, 2015; Reft et al. Med Phys 30:1162-1182, 2003; Sasaki et al., Nihon Hoshasen Gijutsu Gakkai Zasshi 72(9):735-745, 2016). This study uses basic shapes providing results that remove the uncertainties in geometry and can therefore be applied to any shape. This will help determine whether errors in dose calculations are due to the TPS particle transport algorithms or due to other effects, such as inaccurate contouring or incorrect densities. Thus giving the planner an additional degree of freedom in their planning and decision making process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.