Abstract
There are many models for researching charge transport in semiconductors and improving their performance. Most of them give good descriptions of the experimental data at room temperature. But it is still an open question which model is correct. In this paper, numerical calculations based on three modified versions of a classical model were made, and compared with experimental data for typical devices at room or low temperatures. Although their results are very similar to each other at room temperatures, only the version considering exciton effects by using a hydrogen-like model can give qualitative descriptions to recent experimental data at low temperatures. Moreover, the mobility was researched in detail by comparing the constant model and temperature dependence model. Then, we found the performance increases with the mobility of each charge carrier type being independent to the mobility of the other one. This paper provides better insight into understanding the physical mechanism of carrier transport in semiconductors, and the results show that exciton effects should be considered in modeling organic solar cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.