Abstract

Freeform optical components enable dramatic advances for optical systems in both performance and packaging. Surface form metrology of manufactured freeform optics remains a challenge and an active area of research. Towards addressing this challenge, we previously reported on a novel architecture, cascade optical coherence tomography (C-OCT), which was validated for its ability of high-precision sag measurement at a given point. Here, we demonstrate freeform surface measurements, enabled by the development of a custom optical-relay-based scanning mechanism and a unique high-speed rotation mechanism. Experimental results on a flat mirror demonstrate an RMS flatness of 14 nm (∼λ/44 at the He-Ne wavelength). Measurement on a freeform mirror is achieved with an RMS residual of 69 nm (∼λ/9). The system-level investigations and validation provide the groundwork for advancing C-OCT as a viable freeform metrology technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.