Abstract

Ventilator-associated bacterial pneumonia (VAP) is a important intensive care unit (ICU)-acquired infection in mechanically ventilated patients. Early and correct diagnosis of VAP is difficult but is an urgent challenge for an optimal antibiotic treatment. The aim of the study was to evaluate the incidence and microbiology of ventilator-associated pneumonia and to compare three quantitative bronchoscopic methods for diagnosis. A prospective, open, epidemiological clinical study was performed in a surgical ICU. In a prospective study, 279 patients admitted to a 14-bed surgical ICU during a 1-year period were evaluated with regard to VAP. Three quantitative culture bronchoscopic techniques for identifying the etiological agent were compared [bronchoalveolar lavage (BAL), protected specimen brush (PSB) and bronchoscopic tracheobronchial secretion (TBS)]. Among 103 long-term ventilated patients, 49 (48%) developed one or more VAPs (a total of 60 VAPs). The incidence was 24 VAPs per 100 ventilated patients or 23 VAPs per 1000 ventilator days. BAL, PSB and TBS with quantitative measurements were equivalent in identifying the bacterial etiology. The VAP was caused predominantly by Staphylococcus aureus in 38% of cases, followed by Pseudomonas aeruginosa in 10%, Haemophilus influenzae in 10% and Klebsiella sp. in 9%. We did not find an increased mortality rate in patients undergoing long-term ventilation who acquired VAP in comparison with patients without VAP. For the identification of the microbiological etiology of VAP, one of three available bronchoscopic methods analysed by quantitative measurements is sufficient. In our study, quantitative bronchoscopic tracheal secretion analysis was very promising. Before accepting this method as a standard technique, other studies will have to confirm our results.

Highlights

  • Ventilator-associated bacterial pneumonia (VAP) is a major threat to the recovery of patients receiving mechanical ventilation, and is one of the most important intensive care unit (ICU)-acquired infections in mechanically ventilated patients

  • bronchoalveolar lavage (BAL), protected specimen brush (PSB) and tracheobronchial secretion (TBS) with quantitative measurements were equivalent in identifying the bacterial etiology

  • The VAP was caused predominantly by Staphylococcus aureus in 38% of cases, followed by Pseudomonas aeruginosa in 10%, Haemophilus influenzae in 10% and Klebsiella sp. in 9%

Read more

Summary

Introduction

Ventilator-associated bacterial pneumonia (VAP) is a major threat to the recovery of patients receiving mechanical ventilation, and is one of the most important intensive care unit (ICU)-acquired infections in mechanically ventilated patients. BAL = bronchoalveolar lavage; CFU = colony-forming units; CPIS = Clinical Pulmonary Infection Score; ICU = intensive care unit; PSB = protected specimen brush; TBS = tracheobronchial secretion; VAP = ventilator-associated pneumonia. Ventilator-associated bacterial pneumonia (VAP) is a important intensive care unit (ICU)acquired infection in mechanically ventilated patients. The aim of the study was to evaluate the incidence and microbiology of ventilator-associated pneumonia and to compare three quantitative bronchoscopic methods for diagnosis. Three quantitative culture bronchoscopic techniques for identifying the etiological agent were compared [bronchoalveolar lavage (BAL), protected specimen brush (PSB) and bronchoscopic tracheobronchial secretion (TBS)]. Before accepting this method as a standard technique, other studies will have to confirm our results

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.