Abstract

The accidental spill of volatile solvents or the release of flammable gases within equipment and buildings is likely to form fuel concentration gradients unless efficient mixing is provided. As a consequence, even small amounts of fuel can form flammable clouds, and partial volume deflagrations may occur. Nevertheless, few indications are given in international guidelines for vent sizing and only over-conservative well-mixed stoichiometric assumptions are used. In this paper, we propose a predictive methodology for the evaluation of the dynamics of partial volume deflagration, aiming at defining useful correlations for the design of vent devices, starting from the fundamental equation for the rate of pressure rise and flame propagation in closed vessel. We define a ‘stratified gas deflagration index’ K G( m), where m is the filling ratio, and use it with the most common design equations for vent sizing. The approach has been validated by means of a CFD code for the simulation of stratified laminar methane–air explosion by varying both filling ratio and volume.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.