Abstract

BackgroundRecent studies have suggested the role of mammalian target of rapamycin complex 1 (mTORC1) in the pathophysiology of depression. Although venlafaxine was thought to be a serotonin and norepinephrine reuptake inhibitor (SNRI), its pharmacological mechanism remain elusive. In this study, the effects of venlafaxine on the mTORC1 system were studied in both chronic unpredictable mild stress (CUMS) and chronic social defeat stress (CSDS) models. MethodFirst, we examined whether repeated venlafaxine treatment reversed the effects of CUMS and CSDS on the mTORC1 signaling cascade in both the hippocampus and medial prefrontal cortex (mPFC). Second, several selective pharmacological inhibitors of the mTORC1 system, including rapamycin, LY294002 and U0126, were used together to determine whether the protective effects of venlafaxine against the CUMS and CSDS models were prevented by mTORC1 system blockade. Finally, genetic knockdown of mTORC1 by mTORC1-shRNA was further adopted to test whether mTORC1 was necessary for the anti-stress effects of venlafaxine in mice. ResultOur results showed that the decreasing effects of CUMS and CSDS on the mTORC1 signaling cascade in the hippocampus and mPFC were restored by venlafaxine, and the use of rapamycin, LY294002, U0126 and mTORC1-shRNA fully abolished the anti-stress actions of venlafaxine in mice. ConclusionThe mTORC1 system is involved in the pharmacological mechanism of venlafaxine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.