Abstract

To examine the effects of the veneering technique on the fracture resistance of zirconia-based crowns. An artificial tooth was prepared with a 1.2 mm heavy chamfer finish line and 8° taper. The prepared tooth was scanned using CAD/CAM technology to fabricate 45 cobalt chromium (CoCr) testing dies. One CoCr die was scanned, and 45 zirconia copings were milled and divided according to the veneering technique into three groups of 15 specimens each: layering veneering (LV) using Vita Vm9, overpressing veneering (OV) using Vita Pm9, and digital veneering (DV) using Vita Triluxe forte. The crowns were cemented onto the testing dies using glass ionomer cement. The specimens were thermocycled (3000 cycles, 5° to 55°) then statically loaded (3.7 mm ball, 0.5 mm/min crosshead speed) until failure. Failed crowns were inspected using a magnifier, and failure patterns were identified. One-way ANOVA and multiple comparison Bonferroni tests were applied for statistical analysis of the results. Means and standard deviations of failure loads were 1200 ± 306 N for the LV group, 857 ± 188 N for the OV group, and 638 ± 194 N for the DV group. The differences in failure loads were statistically significant between all groups (p < 0.05). Failure mode was predominantly cohesive for LV and OV groups, whereas it was predominantly adhesive for the DV group. The LV group was superior to other groups in terms of fracture resistance, while the DV group was inferior to the other groups in the same aspect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.