Abstract

In this paper we determine the velocity, the energy, and estimate writhe and twist helicity contributions of vortex filaments in the shape of torus knots and unknots (as toroidal and poloidal coils) in a perfect fluid. Calculations are performed by numerical integration of the Biot-Savart law. Vortex complexity is parametrized by the winding number w given by the ratio of the number of meridian wraps to that of longitudinal wraps. We find that for w<1 vortex knots and toroidal coils move faster and carry more energy than a reference vortex ring of same size and circulation, whereas for w>1 knots and poloidal coils have approximately same speed and energy of the reference vortex ring. Helicity is dominated by writhe contributions. Finally, we confirm the stabilizing effect of the Biot-Savart law for all knots and unknots tested, found to be structurally stable over a distance of several diameters. Our results also apply to quantized vortices in superfluid 4He .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.