Abstract

Abstract Vegetation greenness distributions [based on remote sensing normalized difference vegetation index (NDVI)] and their change are analyzed as functional vegetation–climate relations in a two-dimensional ecohydrological state space spanned by surface flux ratios of energy excess (U; loss by sensible heat H over supply by net radiation N) versus water excess (W; loss by discharge Ro over gain by precipitation P). An ecohydrological ansatz attributes state change trajectories in (U, W) space to external (or climate) and internal (or anthropogenic) causes jointly with vegetation greenness interpreted as an active tracer. Selecting the Tibetan Plateau with its complex topographic, climate, and vegetation conditions as target area, ERA-Interim weather data link geographic and (U, W) state space, into which local remote sensing Global Inventory Modeling and Mapping Studies (GIMMS) data (NDVI) are embedded; a first and second period (1982–93 and 1994–2006) are chosen for change attribution analysis. The study revealed the following results: 1) State space statistics are characterized by a bimodal distribution with two distinct geobotanic regimes (semidesert and steppe) of low and moderate vegetation greenness separated by gaps at aridity D ~ 2 (net radiation over precipitation) and greenness NDVI ~ 0.3. 2) Changes between the first and second period are attributed to external (about 70%) and internal (30%) processes. 3) Attribution conditioned joint distributions of NDVI (and its change) show 38.2% decreasing (61.8% increasing) area cover with low (moderate) greenness while high greenness areas are slightly reduced. 4) Water surplus regions benefit most from climate change (showing vegetation greenness growth) while the energy surplus change is ambiguous, because ecohydrological diagnostics attributes high mountainous regions (such as the Himalayas) as internal without considering the heat storage deficit due to increasing vegetation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.