Abstract
This paper develops a vector space model of a class of probabilistic finite state automata (PFSA) that are constructed from finite-length symbol sequences. The vector space is constructed over the real field, where the algebraic operations of vector addition and the associated scalar multiplication operations are defined on a probability measure space, and implications of these algebraic operations are interpreted. The zero element of this vector space is semantically equivalent to a PFSA, referred to as symbolic white noise. A norm is introduced on the vector space of PFSA, which provides a measure of the information content. An application example is presented in the framework of pattern recognition for identification of robot motion in a laboratory environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.