Abstract

Stripped-back representative VCSEL devices with a simple fabrication process that very closely approaches the performance of standard BCB-planarised devices have been produced. These VCSEL Quick Fabrication (VQF) devices achieve threshold currents only 0.3 mA higher than that of a standard device produced from the same material. The predictability of standard performance from VQF performance is also robustly assessed in terms of temperature effects to account for the observed disparities. These VQF devices are then processed across a 6-inch (152 mm) wafer and the resulting device-level characteristics are mapped. From this, it is apparent that there is an approximately radial decrease in oxide aperture diameter from centre to edge, found to be driven by the strain-induced wafer bow. After corrections, a residual spatial variation across the wafer remains, which, in conjunction with temperature dependent measurements, is shown to be a result of epi-material variation. By observation at 50 °C, that is, at a temperature closely resembling that of intended application, the residual centre-to-edge variation in threshold current density is found to be only 0.2 kA/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> , compared to 1.3 kA/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> when observing the room temperature variation of devices of nominally equivalent active volumes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.