Abstract

BackgroundFactors determining hemodynamic stability during human ventricular tachycardia (VT) are incompletely understood. ObjectivesThe purposes of this study were to characterize sinus rate (SR) responses during monomorphic VT in association with hemodynamic stability and to prospectively assess the effects of vagolytic therapy on VT tolerance. MethodsThis is a retrospective analysis of patients undergoing scar-related VT ablation. Vasovagal responses were evaluated by analyzing sinus cycle length before VT induction and during VT. SR responses were classified into 3 groups: increasing (≥5 beats/min, sympathetic), decreasing (≥5 beats/min, vagal), and unchanged, with the latter 2 categorized as inappropriate SR. In a prospective cohort (n = 30) that exhibited a failure to increase SR, atropine was administered to improve hemodynamic tolerance to VT. ResultsIn 150 patients, 261 VT episodes were analyzed (29% untolerated, 71% tolerated) with median VT duration 1.6 minutes. A total of 52% of VT episodes were associated with a sympathetic response, 31% had unchanged SR, and 17% of VTs exhibited a vagal response. A significantly higher prevalence of inappropriate SR responses was observed during untolerated VT (sustained VT requiring cardioversion within 150 seconds) compared with tolerated VT (84% vs 34%; P < 0.001). Untolerated VT was significantly different between groups: 9% (sympathetic), 82% (vagal), and 32% (unchanged) (P < 0.001). Atropine administration improved hemodynamic tolerance to VT in 70%. ConclusionsNearly one-half of VT episodes are associated with failure to augment SR, indicative of an under-recognized pathophysiological vasovagal response to VT. Inappropriate SR responses were more predictive of hemodynamic instability than VT rate and ejection fraction. Vagolytic therapy may be a novel method to augment blood pressure during VT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.