Abstract

To determine the molecular steps involved in the vasopressin-induced renal Na+ reabsorption, the patch-clamp technique was utilized to study the role of this hormone in the regulation of apical Na+ channels in renal epithelial A6 cells. Addition of arginine vasopressin (AVP) induced and/or enhanced Na+ channel activity within 5 min of addition under cell-attached conditions. The AVP-induced channel activity was a reflection of both an increase in the average apparent channel number (0.2-1.7) and the percent open time (2-56%). Addition of the phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine, the adenosine 3',5'-cyclic monophosphate (cAMP) analogues, 8-(4-chlorophenylthio)-cAMP and 8-bromo-cAMP, or forskolin elicited a comparable effect to that of AVP. The induced channels had similar properties to Na+ channels previously reported, including a channel conductance of 9 pS, Na(+)-to-K+ selectivity of 3-5:1, and high amiloride sensitivity. The cAMP-dependent protein kinase A (PKA) in the presence of ATP induced and/or enhanced Na+ channel activity in excised inside-out patches with a change in average apparent channel number and percent open probability similar to those observed with either AVP or cAMP analogues in intact cells. Addition of activated pertussis toxin (100 ng/ml) completely blocked the AVP- or PKA-induced Na+ channel activity in excised inside-out patches, whereas incubation of intact cells with the toxin completely prevented the effect of both activators. The data indicate that AVP mediates its effect through a cAMP-dependent pathway involving PKA activation whose target is the G protein pathway that regulates apical epithelial Na+ channel activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.