Abstract
A vasoconstrictory response to adenosine has been reported in coronary rings from fish. Since the reactivity of the large coronary arteries and the microcirculation may differ, the present study was undertaken to determine the role of adenosine in the intact coronary system of trout under constant pressure or flow using an isolated and non-working heart preparation. The involvement of nitric oxide (NO) and the interaction with noradrenaline were also studied. At 10(-9) to 10(-8 )mol l-1, adenosine caused a vasoconstrictory response, whereas between 10(-7) and 10(-5 )mol l-1 the response was predominantly vasodilative. Theophylline abolished both these responses to adenosine. The vasodilation induced by adenosine (at 10(-5 )mol l-1) was significantly reduced when the preparation was perfused under constant-flow than rather under constant-pressure conditions. The nitric oxide synthase inhibitor N-nitro-l-arginine (l-NA, 10(-4 )mol l-1) partially reduced the vasodilation induced by adenosine (at 10(-5 )mol l-1) under constant-pressure but not under constant-flow conditions. Perfusion of the intact coronary system with l-arginine or with adenosine significantly increased the rate of nitrite (NO2-) release, while perfusion with l-NA or theophylline reduced NO2- release. Chemical denudation of the coronary endothelium by CHAPS resulted in the loss of both the l-arginine- and adenosine-mediated vasodilation and the l-arginine-induced increase in the rate of NO2- release. Adenosine (10(-5 )mol l-1) offset and overrode the vasoconstriction induced by 10(-7 )mol l-1 noradrenaline. l-NA inhibited only the adenosine-induced vasodilation but not the ability to offset noradrenaline vasoconstriction, excluding the involvement of NO in the interaction between adenosine and noradrenaline.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.