Abstract

We have developed a chamber model of islet engraftment that optimizes islet survival by rapidly restoring islet-extracellular matrix relationships and vascularization. Our aim was to assess the ability of syngeneic adult islets seeded into blood vessel-containing chambers to correct streptozotocin-induced diabetes in mice. Approximately 350 syngeneic islets suspended in Matrigel extracellular matrix were inserted into chambers based on either the splenic or groin (epigastric) vascular beds, or, in the standard approach, injected under the renal capsule. Blood glucose was monitored weekly for 7 weeks, and an intraperitoneal glucose tolerance test performed at 6 weeks in the presence of the islet grafts. Relative to untreated diabetic animals, glycemic control significantly improved in all islet transplant groups, strongly correlating with islet counts in the graft (P<0.01), and with best results in the splenic chamber group. Glycemic control deteriorated after chambers were surgically removed at week 8. Immunohistochemistry revealed islets with abundant insulin content in grafts from all groups, but with significantly more islets in splenic chamber grafts than the other treatment groups (P<0.05). It is concluded that hyperglycemia in experimental type 1 diabetes can be effectively treated by islets seeded into a vascularized chamber functioning as a "pancreatic organoid."

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.