Abstract

Monocytes and kidney-resident macrophages are considered to be involved in the pathogenesis of renal ischemia-reperfusion injury (IRI). Several subsets of monocytes and macrophages are localized in the injured tissue, but the pathologic roles of these cells are not fully understood. Here, we show that CD169(+) monocytes and macrophages have a critical role in preventing excessive inflammation in IRI by downregulating intercellular adhesion molecule-1 (ICAM-1) expression on vascular endothelial cells. Mice depleted of CD169(+) cells showed enhanced endothelial ICAM-1 expression and developed irreversible renal damage associated with infiltration of a large number of neutrophils. The perivascular localization of CD169(+) monocytes and macrophages indicated direct interaction with blood vessels, and coculture experiments showed that the direct interaction of CD169(+) cell-depleted peripheral blood leukocytes augments the expression levels of ICAM-1 on endothelial cells. Notably, the transfer of Ly6C(lo) monocytes into CD169(+) cell-depleted mice rescued the mice from lethal renal injury and normalized renal ICAM-1 expression levels, indicating that the Ly6C(lo) subset of CD169(+) monocytes has a major role in the regulation of inflammation. Our findings highlight the previously unknown role of CD169(+) monocytes and macrophages in the maintenance of vascular homeostasis and provide new approaches to the treatment of renal IRI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.